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Abstract form of route directions. In Section 5 we describe the annota
tion process and in Section 6 we introduce two implemented

We present an approach to building a realization architectures and report on the evaluation results.
componentfor an NLG system that makes use of an

annotated corpus as the source of linguistic knowl- .
edge. Three issues that we focus on include: mod- 2 TheUseof Corporain NLG

eling of the generation decisions, corpus annotation  The main function of a corpus in generation is to provide a ba-
and specification of the system architecture. sis forrequirements analysifReiter and Dale, 20401t aims
at determining the target texts, characterizing theircstne
) and identifying domain-specific linguistic constructiarsed
1 Introduction to communicate the input data. In the traditionale-based
Linguistic realization, theactical part of Natural Language @PProach to generation, the information gathered in this wa
Generation (NLG), can be defined as a mapping between t n.be used by system developers to explicitly model the be-
conceptual content of a linguistic expression and its gratam navior of the system.
ical form. To perform this mapping, an NLG system requires, Altérnatively, a corpus can be treated as a source of data
a substantial amount of know|edge of how lexical and Syn.from which the generatlon knOW|8dge can be extracted using

tactic constructions can be applied at different levelshef t Statistical and machine learning techniques. This approac
linguistic organization (i.eclause discoursg to encode the €an be used to construct trainable components which do not

intended meaning. require extensive qualitative analysis and domain exgeain

In this paper we present an approach to building a trainablg€ part of the developer and help to overcome the knowledge
realization component applicable to narrow domains such a&cduisition bottleneck. Using this approach, the develope
route directions Instead of relying on hand-crafted linguistic cannot influence directly the choices that the system makes.
resources, such as a grammar or a lexicon, the system a{t-iS the quality of the corpus and the right formulation of
quires all the lexical and syntactic knowledge necessary folh® generation decisions that determine the quality of the o
linguistic realization from a small, domain-specific cospu PUt texts (cf.[Reiteret al, 2003). The advantage of using
Hence, the task of collecting a corpus and annotating it witf£CTPuS-based techniques, is that they can be ported to new

the required semantic and grammatical information becomedomains and applications. They also help to bridge the gap
an integral part of system development. between aspects of generation traditionally viewed as-sepa

The methodology we propose assumes three stages: mo@te. such as sentence vs. discourse generation, or iegical

eling of the generation decisions, preparation of the corpulion Vs. syntactic realization.
and specification of the processing flow. The first step in-,
volvespa semantic and grapmmaticaI%naIysis ofthe targEsl;ptex 2.1 Related Work
and its goal is to identify low-level decisions that woulivdr ~ Corpus-based methods were introduced to NLG in the con-
the generation process. A corpus of relevant target textd mutext of syntactic realizatiofiLangkilde and Knight, 1998
be then collected and annotated with the required semantiglost current works in this area follow ttranking approach
and grammatical information. The final step is to determinewhich involves rule-based overgeneration and then corpus-
the architecture that would specify the flow of information driven selection of the best candidate, €Bangalore and
between modules handling individual decisions. We compar®ambow, 2000b; Varges and Mellish, 200Empirical tech-
two such architectures: a sequential model which assumesiques were also applied to solving isolated tasks, suaxas |
a strict ordering of generation decisions and an integrateital choice, e.glBangalore and Rambow, 20d0Qardering of
model, based on an Integer Linear Programming formulationNP modifiers, e.gilShaw and Hatzivassiloglou, 1906r sen-

The paper is structured as follows: in Section 2 we discus$ence ordering, e.dLapata, 2008 In these works, corpus-
the use of corpora in NLG. Sections 3 and 4 are concernedased methods were applied to solving individual tasks in a
respectively with modeling the semantics and grammaticahon-application context. To the best of our knowledge, a few



projects only tried to cover the whole process of linguistic  instructional texts, such as cooking or assembly instousti
alizations relying exclusively on trainable compondi@ien  which offered a promise of reusing, at least partially, the a

et al, 2002; Kan and McKeown, 2002 notated corpus.
In our application, the task of generating route directions
22 Our Goals comprises two stages. Tlsérategicpart is concerned with

In the current work we investigate the use of a single corfnapping a topological specification of a route, i.eroate

pus as the sole source of linguistic knowledge necessary tplanonto a dynamic model organized around a set of tempo-
drive the process of linguistic realization. In formal teyrwe  rally relatedsituations In the domain of route directions, sit-
can define this process as a one-to-many mapping betweertiations schematize the spatio-temporal interactions dxiw
representation of the semantic content of an expression ariie route follower and salient elements of the environment
its linguistic form. We concentrate on three importantéssu (e.g. streets, landmarks). Thectical part of the generation
that development of a corpus-based realization componenti process, on which we focus in this paper, consists in con-
volves: structing the linguistic description of the underlying temt.

e abstract modularization of the generation process in3 1 Ontology of Situations

terms of discrete, low-level tasks whose realization is to L . .
be learned from the corpus, The ontology of situations constitutes a semi-formal spec-

i ) i ification of the conceptual content of route directions, and
e annotation of the corpus with the semantic and grammatag g ch sanctions the input to the realization component. It

ical information, corresponding respectively to the inputgpans three conceptual levels, each having its own taxonomy

and output of the system, and of classes and properties, related to one another through ax
e specification of the system architecture which deterioms specifying well-formedness conditions (§btarciniak
mines the processing flow. and Strube, 2003Hor a detailed discussion).

At the aspectual levela situation is assigned to a specific
spectual category such astate process accomplishment
or achievemenfiVendler, 1967. The membership in a given
. . category is further formalized as a function of three biratry

3 RouteDirections tributes:stative, durativendculminatedMoens and Steed-
To identify the target texts in our domain we first per- man, 1988
formed an informal analysis of human-authored route direc- At the frame level the conceptual category of each situ-
tions available on the Internet. We identified three catiegor ation is specified. In our domain, three main categories are
of such texts, characterized by different levels of thedistic ~ SelfMotion LocalizationandVisualPerceptionEach of them
and conceptual complexity: is modeled as a frame, with slots specifying conceptuakrole

1. Directions consisting of phrasal expressions only, withatmbmeOI to situation participants (see Tabié 1)

no verbs or discourse connectives, &gwn the street, Frame | Conceptual Roles

past the post office, left onto Church Street SELFMOTION self mover, source, path, goal, etc.

. . . . . VISUALPERCEPTION | percobject, location, direction, etc.
2. Directions expressed with imperative clauses only, with | 5./ 1zaTi0N loc_object, location, direction, etc.

a limited number of verbs and discourse connectives, _ _
e.g.Leave the building, turn right onto Dowman, goto  Table 1: Frames with corresponding conceptual roles

24th Street. : T : .
T . . Finally, situations are not isolated, but occur in temggral
3. Directions expressed with complex texts, characterizedtructured groups. Three temporal relations that we censid
by a broad lexical (verbs, connectives) and structurahre: initialRelation, ongoingRelatiorand subsequentRela-

We illustrate this three-step development process on the ex
ample ofroute directionggeneration.

variation, (see Example 1 below). tion. The relations are functional and non-reversive, which
Example 1. (a) Standing in front of the hotel (b) resultsin the_ structure tak_ing t_heform pfatree (_see _Figb_lre
follow Meridian street south for about 100 meters, For each pair of related situations, ttigild nodesituation is

(c) passing the First Union Bank entrance on your recognized as theeajector being located relative to tHand-
right, (d) until you see the river side in front of you. mark situation (i.e. during itsnitial, ongoingor subsequent
(e) Then make a left onto North Hills Street. (f) _stage)_. Thls trajector-landm_ark asymmetry finds direct-man
The auditorium will be up the street on your left. ifestation in the corresponding linguistic form. In Exampl

_ 1, for instance, situation denoted by (d) bearslthguistic
We decided to collect a corpus of texts from category (3)marking(i.e. discourse connective), which signals its relation
for two reasons Firstly, we wanted to ensure that the gener-ig the situation from () Hence, to properly realize a lin-

ator can express complex content in a consistent manner anghistic description of a situation, its temporal contexstrie
hence decided not to mix different types of texts [feiter  considered.

and Sripada, 2042 Secondly, we noticed structural simi-

larities between route directions from (3) and other types o~ “The categories are partially modeled after FraméNetesand
roles correspond tlame elementxf. [Bakeret al,, 1999)

INotice, however, that there is no clear-cut boundary batwee  Temporal relations can be also signaled by the verb form e.g.
categories (2) and (3). gerundin (a,c), or simply the linear ordering, e.g. (€)(e)
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Figure 1: Temporal structure of situations. Nodgss,, etc. the First Union ...  passing the First Union ... on your right

correspond to discourse units (a), (b), etc. from Example 1.
4 Modeling Generation Decisions Figure 2: Clause-level derivation

Linguistic realization of route directions comprises agen trees3, andg, are adjoined tav,. Again, the ordering of the

of different types of generation decisions. Atthe clauselle  operations determines the linear structure of the text.
verbs and prepositions must be lexicalized, and the syatact

frame of the clause must be specifiedt the discourse level, “j E\Z B, o
clauses must be ordered, and where appropriate, discourse TN /’/m\
connectives lexicalized. To be able to learn these dedsion oo o ) o Py
from a corpus, we first need to determine their sépped ;b follow.. o

\ C?NN D‘c

then formulate them as classification problems. oc™ By 5 null  passing ...
In the approach presented here, we associate low-level gen- Dc/\m* .

eration decisions witminimal elements of the grammatical P > P

form, which may affect the meaning of an expression or ren- ™" % comn be  CONN Dc coNN e

der it ill-formed. null  standing ... null standing .. null  follow ... null  passing ...

4.1 LTAG-based Representation Figure 3: Discourse-level derivation

To determine the range of generation decisions relevanirto o .
application, we first model the grammatical form of route di-4'2 Feature Vector Encoqllng _

rections using Lexicalized Tree Adjoining Grammar (LTAG) To modelthe whole process in a uniform way we represent el-
[Joshi and Schabes, 1991.TAG provides a useful abstrac- ementary trees with feature-value pairs necessary to atcou
tion of the process of building the grammatical form of anfor the distinctions between individual trees and deteemin
expression, callederivation It starts with the selection of the order of adjunction operations (see Table 2).

elementary treesanchored by lexical items, such as verbs or Elementary Tree| Feature Possible Values

prepositions. In the next step, elementary trees are assem- ~ Main Verb sexp NP, NP-VP

bled by means of well-defined operationssobstitutionand verh lex walk, follow, pass, etc.
adjunction Originally used to model the sentence derivation verbform | bareinf, gerund, etc.
only, LTAG has been shown to apply equally well to the struc- ~ Verb Argument | adjrank | numeric

ture of a discourse (c{Webber and Joshi, 1998 At the phrtype | NP, PP, P

preplex to, past, towards, etc.
Discourse Unit | adj_rank numeric

adj_dir left, right

connective| null, and, until, etc.

discourse level, each clause in a text is associated with an
elementary tree anchored by a discourse connective. Follow
ing the underlying temporal or rhetorical relations, disise-
level trees are combined to form the derived structure.

As an example, consider the derivation of discourse unit Table 2: Frames with corresponding conceptual roles
(c) from Example 1 in the context of (a), (b) and (d) (Figure
2). At the clause level, the set of elementary trees includeg,
oneinitial tree«; anchored by the main verb which projects
to Sand specifies the syntactic frame of the clause,and
iliary treesB; and gy corresponding to the verb arguments.
The auxiliary trees are successively adjoined/®node of
a1 immediately dominated b$. The order in which the ad-
junctions take place determines the final ordering of tha-arg
ments in the clause.

At the discourse level (cf. Figure 3), the discourse unit de
scribing the root situation from Figure 1 is modeled as th

:n't'?jl (tjr_eea2, and e}ux'll'frh/ tre.eﬁgﬁnd@l reprlezent thg '®" adj.dir denoting respectively the ordering of the adjunction
ated discourse units. Following the temporal dependencie ,,q ations and the adjunction direction awhnectivespec-

“In our application, nominal expressions are own names gostl fYing the lexical form of the discourse connective (arl if
e.g.Meridian Streetand as such are directly specified in the input, N0 explicit connective is present).
hence we ignore here the problem of NP generation. . .. ..
°E.g. decide whether specifications of the lexical and gratihma 4.3 ) Ge_nerat'(?n |_D(?CIS|OHS Revisited
cal form of a verb constitute a single decision, passingor if they ~ Realizations of individual features used to encode the LTAG

are determined separatelyass+ gerund derivation are now taken to constitute single generatiaide

The tree associated with the main verb in a clause is repre-
nted with three featuresexp, verblexandverh form, de-
noting respectively whether a clause should have an ekplici
subject (i.eNP-VP), the lexical form of the verb and its gram-
matical form. For each verb argument, the correspondireg tre
is modeled with featuresadj_rank which determines the or-
dering of the adjunction operatiorghr_typewhich specifies
the syntactic category of the argument, gmelplex, i.e. the
lexical form of the preposition/particle (fhr_typeis other
thenNP). Finally, the discourse-level trees representing dis-
€ourse units are modeled with three featuradj_rank and



1. [The auditorium will be up the streeton your right] Frame Str.  Freq| Aspect. Str. Freq. | Temp. Str.  Freq.

stative: TRUE, durative:TRUE, culminated:FALSE selfmotion 739| stative 129 | initialRel. 92
. ) ) localization 114| durative 432 | ongoingRel. 235
2. [[ne auﬂ:o:;m] will be [up the street] [ on your ".ght.]] localization vis_perc. 51 | culminated 539 | culminatedRel481
._object location direction
subsequentRelation Table 4: Frequencies of semantic attributes at differenban
tation levels.

3. [Then make a left onto ] [The auditorium will be up the street ]
landmark rajector Conn. Freq] S-Exp. Freqg| Verb Form Freq| Verb Lex. Freq.
) ) null 494|NP-VP 213 |bareinf ~ 480| walk 107
Figure 4: Three levels of annotation: Aspectual Level2. and 158| VP 691 |fin_pres  146| turn 91
Frame Levebnd 3.Temporal Level until 56 gerund 106| continue 59
as 37 will _inf 67| pass 57
sions. Each such decision constitutes a classificatiorlgmob ~ then 22 to_inf 9 | null 53

and consists in assigning a class label to an instance gpecif
ing the semantic context of the particular decision.

Notice that this formulation draws no distinctions be-
tween lexical and syntactic decisions on the one hand, anigvel, pairs oDiscourse Unitmarkables corresponding to re-
discourse-level and clause-level decisions on the othieis T lated situations have been respectively taggerhgectorand
fact simplifies the procedure of acquiring the necessaryandmarkand linked by a directed relation carrying a specific
knowledge from the corpus. For each decision, a classifielabel (i.e.initialRelation, ongoingRelationr subsequentRe-
handling a single-valued prediction needs tdrimicedfrom  lation). In Table 4 we provide frequencies with which respec-
a set of training instances. tive attributes were assigned to the corresponding magkabl

Table 5: Frequencies of selected LTAG-based attributes.

5 CorpusAnnotation 5.2 Grammatical Annotation

To obtain the training data, we collected a corpus of 75 routThe goal of grammatical annotation was to impose the LTAG-
directions texts, with a totél number of 904 discourse units%a-Sed en_codlng on the texts from the corpus. Since discourse
' units, main verbs, arguments and connectives were labeled
during the pre-processing stage, the corresponding lexica
annotations at multiple levels. Each annotation level com(?’lnd order_lng at_trlbutes became _re_adlly ava|lable_, andeenc
: were left implicit. The only explicitly tagged attribute wa

\F/)vrilt?]etshg f:t L?ifrgzrlfiib Il?iitli.((:a'irz?c?rrr[r(fa\?ict)ﬁx;r?gafgﬁir?ssigcflg[led verb form, associated witPPredicatemarkables. Frequencies
q 9 9 of selected attributes are given in Table 5.

categories:

e Discourse Unitmarkables, corresponding to individual 6 Processing M odel

clauses, The abstract architecture of our system comprises a set of

e Predicate markables, corresponding to main verbsclassification task§ = {77, ...,7},}. Each taskl}; consists

within clauses, in assigning a label fronk; = {l;1,...,lim, } to an instance
e Argumentmarkables, corresponding to phrasal argu-fepresenting the particular generation decision. To sakvie
ments of verbs, and vidual tasks, machine learning classifiers are trained @t a s

of data extracted from the annotated corpus.
Since in order to generate a well-formed and fluent text,
individual generation decisions cannot be handled in isola
During the pre-processing stage the texts were tokenizedion, the final issue to be determined during implementation
POS-tagged, and markables were automatically detectad witoncerns the problem of integrating individual generatien
a simple, rule-based system, tuned to the given type of.textscisions with one another. This is a long-standing problem
) ) in NLG (cf. e.g.[Reiter, 1994), and amounts to determin-
5.1 Semantic Annotation ing the flow of information between tasks. One advantage
In order to apply the ontological model of situations to the a of casting different types of generation decisions in alsing
notation task we defined an annotation scheme comprising @assification-oriented format, is that it is easy to impdg
selection of semantic tags which provide a flat represeamtati and test them in various configurations. In the rest of this se
of the categories specified in the ontology (Table 3). tion we describe two alternative models, a sequential and an
Annotations have been realized at different levels, correintegrated one, and give the results of the initial, quativie
sponding to the levels specified in the ontology (Figure 4). A evaluation.
the aspectualevel, eachDiscourse Unitmarkable has been i
tagged with three boolean attributesative, durativandcul- ~ 6-1  Sequential Model
minated At the framelevel, Discourse-unitmarkables have In the pipeline system, implemented asascade of clas-
been tagged with frame labels (iself motion, localization, sifiers the output representation is built incrementally, with
etc) and Argumentmarkables have been assigned semansubsequent classifiers having access to the outputs of¢he pr
tic roles (e.gsource, pattor goal). Finally, at thetemporal  vious modules. Figure 5 illustrates this type of processing

e Connectivemarkables, corresponding to conjunctions
and discourse markers.



Ontological Level| Semantic Tags | Markable Level

Aspectual Level. | stative, durative, culminated Discourse-unit

Frame Level self motion, visualperception, localization Discourse-unit
self mover, source, path, goal, direction, distance | Argument

Temporal Level | trajector, landmark Discourse-unit

initialRelation, ongoingRelation, subsequentRelatioiscourse-unit

Table 3: Semantic annotation scheme

Start . . . -
to find such an assignment of the variables that the decision
% function is either maximized or minimized within the bounds

ol as until T, Connective provided by the constraints (see ejemhauser and Wolsey,
1999). In our application, we uskinary variables to model
NP-VP VP T, S-Exp. both nodes in the graph, corresponding to single labels, and
transitions between nodes. The objective function is then e
pressed as a weighted sum of the varidbles
bare inf.  gerund fin. pres. T; Verb Form min c(lll)x(lll) + C(llg)l'(llg) —+ ...+ c(lijlkp):v(lij, lkp)
Figure 5: Sequential model on the example of three tasksihe constraints we add specify that firstly, variables mig ta
Connective, S-Exm@andVerb Form binary values only, i.ex € 0,1, secondly, for each task only

one variable may be selected, and finally, if two variables
as a traversal of a multi-layered lattice, with the indiatiu z(1;;) andz(l,) modeling a pair of labels belonging to two
layers corresponding to single tasks, and the nodes reyirese different tasks are selected, then atgo;;, lx,) co-modeling
ing the respective outcomes. At each step, a corpus traingflis pair of labels must be selecfed
classifier outputs a probability distribution, and the &ition
augmented with the highest probability is selected. A well6.4 Evaluation

known problem with this type of processing is that generatio \ne  evaluated both systems usiigave-one-outcross-

decisions are dependant on one another and hence the init@lidation i.e. each text was used once for testing, and the
decisions lack the necessary contextual information plexVi remaining’ texts provided the training data. We uBEve-
by the those occuring later (¢Danlos, 198%. Bayesclassifier to learn realizations of individual tasks from
the data, and to solve the ILP model we appliggolve a
6.2 Integrated Model GNU-licence Mixed Integer Programming (DIP) soR:er
This problem is apparently eliminated in an integratediarch ~ The goal of the evaluation was to see how good both sys-
tecture, with all decisions being handled within a single-pr tems are at mirroring the human-authored texts. To assess
cess. As shown in Figure 6, an integrated process can hguch defined performance we applied three metrics: accuracy
modeled as a graph, with the nodes representing outputs froend Kappato evaluate individual tasks arfehi, a distance
individual tasks, and the edges marking inter-dependenciemeasure that we used to compare the feature-based repre-
The problem amounts to finding a path through the graphsentations of the generated texts and the original ones. The
so that for each task, a single node is selected,glalal  results given in Table 6 show that both systems reached rela-
distribution of costs associated with both selected nodés a tively high scores, wittKappaover 70% for almost all tasks
transitions is considered. and the end-to-end scordilying over 85%. This proves that
the meaning-to-formmapping can be successfully learned
from a relatively small corpus. In addition, an improvement
of the ILP system over the pipeline in almost all tasks and
the overall scoréhi indicates that an integrated architecture
offers a serious advantage over the sequential model.

7 Conclusions

bare inf. gerund fin. pres. In this paper we presented a corpus-based approach to build-
ing a trainable realization component for an NLG system.

T Verb Form We concentrated on three important aspects of this task:

Figure 6: Integrated model abstract representation of the generation process in terms

SCosts of single nodes(l;;) are calculated as-log(P(li;)),

6.3 Linear Programming Formulation where P(l;;) is the probability of selecting labe}; for task 77,
output by the classifier. Costs of transitiof(g;;1x,) are given by

To solve this graph search problem we apply an optimiza-_joq(P(i,;, 11,)), with P(L;;, I, denoting the joint probability of
tion technique, called Integer Linear Programming (ILP). A |abelsl;; and!y,, co-occuring in the corpus.

ILP problem consists of decision variables xo, ..., x,, aug- "For details on the ILP formulation séMlarciniak and Strube,
mented withcostsand combined in a linear target function, 20053

and a set of constraints blockifitggal decisions The goal is 8http:/iwww.geocities.com/Ipsolve/



Pipeline ILP

Tasks Accuraci)/ P Accuracy K [Langkilde and Knight, 1998 Irene Langkilde and Kevin Knight.
Adj Rank 96.81%  90.90%| 97.43%  92.66% Generation that exploits corpus-based statistical knigde In
Adj. Dir. 98.04%  89.64%| 97.95%  89.05% Proceedings of the 17th International Conference on Coaput
Connective | 79.10% 61.14%| 79.36% 61.31% tional Linguistics and the 36th Annual Meeting of the Asgoci
S Exp. 96.20% 90.17%| 99.49% 98.65% tion for Computational LinguisticsMontréal, Québec, Canada,
Verb Form | 87.83%  78.90%| 93.22%  88.30% 10-14 August 1998, pages 704-710, 1998.
Verb Lex 67.40%  64.19% 76.08%  74.00% [Lapata, 200B Mirella Lapata. Probabilistic text structuring: Ex-
Phrase Type| 87.08%  73.36% 88.03%  77.17% periments with sentence ordering.Rroceedings of the 41st An-
Prep. Lex 86.95%  81.12% 88.59%  83.24% nual Meeting of the Association for Computational Lingigist
Adj Rank 86.95%  78.65% 91.27%  85.72% Sapporo, Japan, 7-12 July 2003, pages 545-552, 2003.

Phi 0.87 0.90 [Marciniak and Strube, 200baTomasz Marciniak and Michael

Table 6: Results of quantitative evaluation of the ILP and Strube. Beyond the pipeline: Discrete optimization in NLR.
pipeline systems. Proceedings of the Ninth Conference on Computational Néitur
Language LearningAnn Arbor, Ml, 29-30 June, 2005, pages

of classification-oriented decisions, annotation of thipuae 136-143, 2005.

with the necessary linguistic information and aggregatibn [Marciniak and Strube, 2005bTomasz Marciniak and Michael
individual decisions within a single integrated architeet Strube. Modeling and annotating the semantics of routecdire
In the evaluation we showed that a corpus-based realization tions. InProceedlngs qf the 6th International Workshop on Com-
in a narrow domain presents itself as a feasible task reguiri Putational Semanticslilburg, The Netherlands, January 12-14,

a small amount of annotated data only. 2005, pages 151-162, 2005.
] [Moens and Steedman, 1988larc Moens and Mark Steedman.
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