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Abstract

We present an approach to building a realization
component for an NLG system that makes use of an
annotated corpus as the source of linguistic knowl-
edge. Three issues that we focus on include: mod-
eling of the generation decisions, corpus annotation
and specification of the system architecture.

1 Introduction
Linguistic realization, thetactical part of Natural Language
Generation (NLG), can be defined as a mapping between the
conceptual content of a linguistic expression and its grammat-
ical form. To perform this mapping, an NLG system requires
a substantial amount of knowledge of how lexical and syn-
tactic constructions can be applied at different levels of the
linguistic organization (i.e.clause, discourse) to encode the
intended meaning.

In this paper we present an approach to building a trainable
realization component applicable to narrow domains such as
route directions. Instead of relying on hand-crafted linguistic
resources, such as a grammar or a lexicon, the system ac-
quires all the lexical and syntactic knowledge necessary for
linguistic realization from a small, domain-specific corpus.
Hence, the task of collecting a corpus and annotating it with
the required semantic and grammatical information becomes
an integral part of system development.

The methodology we propose assumes three stages: mod-
eling of the generation decisions, preparation of the corpus
and specification of the processing flow. The first step in-
volves a semantic and grammatical analysis of the target texts,
and its goal is to identify low-level decisions that would drive
the generation process. A corpus of relevant target texts must
be then collected and annotated with the required semantic
and grammatical information. The final step is to determine
the architecture that would specify the flow of information
between modules handling individual decisions. We compare
two such architectures: a sequential model which assumes
a strict ordering of generation decisions and an integrated
model, based on an Integer Linear Programming formulation.

The paper is structured as follows: in Section 2 we discuss
the use of corpora in NLG. Sections 3 and 4 are concerned
respectively with modeling the semantics and grammatical

form of route directions. In Section 5 we describe the annota-
tion process and in Section 6 we introduce two implemented
architectures and report on the evaluation results.

2 The Use of Corpora in NLG
The main function of a corpus in generation is to provide a ba-
sis forrequirements analysis[Reiter and Dale, 2000]. It aims
at determining the target texts, characterizing their structure
and identifying domain-specific linguistic constructionsused
to communicate the input data. In the traditionalrule-based
approach to generation, the information gathered in this way
can be used by system developers to explicitly model the be-
havior of the system.

Alternatively, a corpus can be treated as a source of data
from which the generation knowledge can be extracted using
statistical and machine learning techniques. This approach
can be used to construct trainable components which do not
require extensive qualitative analysis and domain expertise on
the part of the developer and help to overcome the knowledge
acquisition bottleneck. Using this approach, the developer
cannot influence directly the choices that the system makes.
It is the quality of the corpus and the right formulation of
the generation decisions that determine the quality of the out-
put texts (cf.[Reiteret al., 2003]). The advantage of using
corpus-based techniques, is that they can be ported to new
domains and applications. They also help to bridge the gap
between aspects of generation traditionally viewed as sepa-
rate, such as sentence vs. discourse generation, or lexicaliza-
tion vs. syntactic realization.

2.1 Related Work
Corpus-based methods were introduced to NLG in the con-
text of syntactic realization[Langkilde and Knight, 1998].
Most current works in this area follow therankingapproach
which involves rule-based overgeneration and then corpus-
driven selection of the best candidate, e.g.[Bangalore and
Rambow, 2000b; Varges and Mellish, 2001]. Empirical tech-
niques were also applied to solving isolated tasks, such as lex-
ical choice, e.g.[Bangalore and Rambow, 2000a], ordering of
NP modifiers, e.g.[Shaw and Hatzivassiloglou, 1999] or sen-
tence ordering, e.g.[Lapata, 2003]. In these works, corpus-
based methods were applied to solving individual tasks in a
non-application context. To the best of our knowledge, a few



projects only tried to cover the whole process of linguisticre-
alizations relying exclusively on trainable components[Chen
et al., 2002; Kan and McKeown, 2002].

2.2 Our Goals
In the current work we investigate the use of a single cor-
pus as the sole source of linguistic knowledge necessary to
drive the process of linguistic realization. In formal terms, we
can define this process as a one-to-many mapping between a
representation of the semantic content of an expression and
its linguistic form. We concentrate on three important issues
that development of a corpus-based realization component in-
volves:

• abstract modularization of the generation process in
terms of discrete, low-level tasks whose realization is to
be learned from the corpus,

• annotation of the corpus with the semantic and grammat-
ical information, corresponding respectively to the input
and output of the system, and

• specification of the system architecture which deter-
mines the processing flow.

We illustrate this three-step development process on the ex-
ample ofroute directionsgeneration.

3 Route Directions
To identify the target texts in our domain we first per-
formed an informal analysis of human-authored route direc-
tions available on the Internet. We identified three categories
of such texts, characterized by different levels of the linguistic
and conceptual complexity:

1. Directions consisting of phrasal expressions only, with
no verbs or discourse connectives, e.g.Down the street,
past the post office, left onto Church Street.

2. Directions expressed with imperative clauses only, with
a limited number of verbs and discourse connectives,
e.g.Leave the building, turn right onto Dowman, go to
24th Street.

3. Directions expressed with complex texts, characterized
by a broad lexical (verbs, connectives) and structural
variation, (see Example 1 below).

Example 1. (a) Standing in front of the hotel (b)
follow Meridian street south for about 100 meters,
(c) passing the First Union Bank entrance on your
right, (d) until you see the river side in front of you.
(e) Then make a left onto North Hills Street. (f)
The auditorium will be up the street on your left.

We decided to collect a corpus of texts from category (3)
for two reasons1. Firstly, we wanted to ensure that the gener-
ator can express complex content in a consistent manner and
hence decided not to mix different types of texts (cf.[Reiter
and Sripada, 2002]). Secondly, we noticed structural simi-
larities between route directions from (3) and other types of

1Notice, however, that there is no clear-cut boundary between
categories (2) and (3).

instructional texts, such as cooking or assembly instructions,
which offered a promise of reusing, at least partially, the an-
notated corpus.

In our application, the task of generating route directions
comprises two stages. Thestrategicpart is concerned with
mapping a topological specification of a route, i.e. aroute
planonto a dynamic model organized around a set of tempo-
rally relatedsituations. In the domain of route directions, sit-
uations schematize the spatio-temporal interactions between
the route follower and salient elements of the environment
(e.g. streets, landmarks). Thetactical part of the generation
process, on which we focus in this paper, consists in con-
structing the linguistic description of the underlying content.

3.1 Ontology of Situations
The ontology of situations constitutes a semi-formal spec-
ification of the conceptual content of route directions, and
as such sanctions the input to the realization component. It
spans three conceptual levels, each having its own taxonomy
of classes and properties, related to one another through ax-
ioms specifying well-formedness conditions (see[Marciniak
and Strube, 2005b] for a detailed discussion).

At the aspectual level, a situation is assigned to a specific
aspectual category such as:state, process, accomplishment
or achievement[Vendler, 1967]. The membership in a given
category is further formalized as a function of three binaryat-
tributes:stative, durativeandculminated[Moens and Steed-
man, 1988].

At the frame level, the conceptual category of each situ-
ation is specified. In our domain, three main categories are
SelfMotion, LocalizationandVisualPerception. Each of them
is modeled as a frame, with slots specifying conceptual roles
attributed to situation participants (see Table 1)2.

Frame Conceptual Roles
SELFMOTION self mover, source, path, goal, etc.
V ISUALPERCEPTION percobject, location, direction, etc.
LOCALIZATION loc object, location, direction, etc.

Table 1: Frames with corresponding conceptual roles

Finally, situations are not isolated, but occur in temporally
structured groups. Three temporal relations that we consider
are: initialRelation, ongoingRelationand subsequentRela-
tion. The relations are functional and non-reversive, which
results in the structure taking the form of a tree (see Figure1).
For each pair of related situations, thechild nodesituation is
recognized as thetrajector being located relative to theland-
mark situation (i.e. during itsinitial , ongoingor subsequent
stage). This trajector-landmark asymmetry finds direct man-
ifestation in the corresponding linguistic form. In Example
1, for instance, situation denoted by (d) bears thelinguistic
marking(i.e. discourse connective), which signals its relation
to the situation from (b)3. Hence, to properly realize a lin-
guistic description of a situation, its temporal context must be
considered.

2The categories are partially modeled after FrameNetframesand
roles correspond toframe elements, cf. [Bakeret al., 1998])

3Temporal relations can be also signaled by the verb form e.g.
gerundin (a,c), or simply the linear ordering, e.g. (d)≺ (e)
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Figure 1: Temporal structure of situations. Nodessa, sb, etc.
correspond to discourse units (a), (b), etc. from Example 1.

4 Modeling Generation Decisions
Linguistic realization of route directions comprises a range
of different types of generation decisions. At the clause level,
verbs and prepositions must be lexicalized, and the syntactic
frame of the clause must be specified4. At the discourse level,
clauses must be ordered, and where appropriate, discourse
connectives lexicalized. To be able to learn these decisions
from a corpus, we first need to determine their scope5, and
then formulate them as classification problems.

In the approach presented here, we associate low-level gen-
eration decisions withminimal elements of the grammatical
form, which may affect the meaning of an expression or ren-
der it ill-formed.

4.1 LTAG-based Representation
To determine the range of generation decisions relevant to our
application, we first model the grammatical form of route di-
rections using Lexicalized Tree Adjoining Grammar (LTAG)
[Joshi and Schabes, 1991]. LTAG provides a useful abstrac-
tion of the process of building the grammatical form of an
expression, calledderivation. It starts with the selection of
elementary trees, anchored by lexical items, such as verbs or
prepositions. In the next step, elementary trees are assem-
bled by means of well-defined operations ofsubstitutionand
adjunction. Originally used to model the sentence derivation
only, LTAG has been shown to apply equally well to the struc-
ture of a discourse (cf.[Webber and Joshi, 1998]). At the
discourse level, each clause in a text is associated with an
elementary tree anchored by a discourse connective. Follow-
ing the underlying temporal or rhetorical relations, discourse-
level trees are combined to form the derived structure.

As an example, consider the derivation of discourse unit
(c) from Example 1 in the context of (a), (b) and (d) (Figure
2). At the clause level, the set of elementary trees includes
oneinitial treeα1 anchored by the main verb which projects
to Sand specifies the syntactic frame of the clause, andaux-
iliary treesβ1 andβ2 corresponding to the verb arguments.
The auxiliary trees are successively adjoined toVP node of
α1 immediately dominated byS. The order in which the ad-
junctions take place determines the final ordering of the argu-
ments in the clause.

At the discourse level (cf. Figure 3), the discourse unit de-
scribing the root situation from Figure 1 is modeled as the
initial treeα2, and auxiliary treesβ3 andβ4 represent the re-
lated discourse units. Following the temporal dependencies,

4In our application, nominal expressions are own names mostly,
e.g.Meridian Street, and as such are directly specified in the input,
hence we ignore here the problem of NP generation.

5E.g. decide whether specifications of the lexical and grammati-
cal form of a verb constitute a single decision, i.e.passingor if they
are determined separately:pass+ gerund
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Figure 2: Clause-level derivation

treesβ3 andβ4 are adjoined toα2. Again, the ordering of the
operations determines the linear structure of the text.
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Figure 3: Discourse-level derivation

4.2 Feature Vector Encoding
To model the whole process in a uniform way we represent el-
ementary trees with feature-value pairs necessary to account
for the distinctions between individual trees and determine
the order of adjunction operations (see Table 2).

Elementary Tree Feature Possible Values
Main Verb s exp NP, NP-VP

verb lex walk, follow, pass, etc.
verb form bare inf, gerund, etc.

Verb Argument adj rank numeric
phr type NP, PP, P
prep lex to, past, towards, etc.

Discourse Unit adj rank numeric
adj dir left, right
connective null, and, until, etc.

Table 2: Frames with corresponding conceptual roles

The tree associated with the main verb in a clause is repre-
sented with three features:s exp, verblexandverb form, de-
noting respectively whether a clause should have an explicit
subject (i.e.NP-VP), the lexical form of the verb and its gram-
matical form. For each verb argument, the corresponding tree
is modeled with features:adj rank which determines the or-
dering of the adjunction operations,phr typewhich specifies
the syntactic category of the argument, andprep lex, i.e. the
lexical form of the preposition/particle (ifphr type is other
thenNP). Finally, the discourse-level trees representing dis-
course units are modeled with three features:adj rank and
adj dir denoting respectively the ordering of the adjunction
operations and the adjunction direction andconnectivespec-
ifying the lexical form of the discourse connective (ornull if
no explicit connective is present).

4.3 Generation Decisions Revisited
Realizations of individual features used to encode the LTAG
derivation are now taken to constitute single generation deci-
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Figure 4: Three levels of annotation: 1.Aspectual Level, 2.
Frame Leveland 3.Temporal Level

sions. Each such decision constitutes a classification problem
and consists in assigning a class label to an instance specify-
ing the semantic context of the particular decision.

Notice that this formulation draws no distinctions be-
tween lexical and syntactic decisions on the one hand, and
discourse-level and clause-level decisions on the other. This
fact simplifies the procedure of acquiring the necessary
knowledge from the corpus. For each decision, a classifier
handling a single-valued prediction needs to beinducedfrom
a set of training instances.

5 Corpus Annotation
To obtain the training data, we collected a corpus of 75 route
directions texts, with a total number of 904 discourse units.
By applying the concept ofstand-offannotation, i.e. separa-
tion of tags from the actual texts, we were able to realize the
annotations at multiple levels. Each annotation level com-
prises a set ofmarkables, i.e. marked text spans associated
with the required linguistic information and falling in four
categories:

• Discourse Unitmarkables, corresponding to individual
clauses,

• Predicate markables, corresponding to main verbs
within clauses,

• Argumentmarkables, corresponding to phrasal argu-
ments of verbs, and

• Connectivemarkables, corresponding to conjunctions
and discourse markers.

During the pre-processing stage the texts were tokenized,
POS-tagged, and markables were automatically detected with
a simple, rule-based system, tuned to the given type of texts.

5.1 Semantic Annotation
In order to apply the ontological model of situations to the an-
notation task we defined an annotation scheme comprising a
selection of semantic tags which provide a flat representation
of the categories specified in the ontology (Table 3).

Annotations have been realized at different levels, corre-
sponding to the levels specified in the ontology (Figure 4). At
the aspectuallevel, eachDiscourse Unitmarkable has been
tagged with three boolean attributes:stative, durativeandcul-
minated. At the frame level, Discourse-unitmarkables have
been tagged with frame labels (i.e.self motion, localization,
etc.) and Argumentmarkables have been assigned seman-
tic roles (e.g.source, pathor goal). Finally, at thetemporal

Frame Str. Freq. Aspect. Str. Freq. Temp. Str. Freq.
self motion 739 stative 129 initialRel. 92
localization 114 durative 432 ongoingRel. 235
vis perc. 51 culminated 539 culminatedRel.481

Table 4: Frequencies of semantic attributes at different anno-
tation levels.

Conn. Freq. S-Exp. Freq. Verb Form Freq. Verb Lex. Freq.
null 494 NP-VP 213 bare inf 480 walk 107
and 158 VP 691 fin pres 146 turn 91
until 56 gerund 106 continue 59
as 37 will inf 67 pass 57
then 22 to inf 9 null 53

Table 5: Frequencies of selected LTAG-based attributes.

level, pairs ofDiscourse Unitmarkables corresponding to re-
lated situations have been respectively tagged astrajectorand
landmarkand linked by a directed relation carrying a specific
label (i.e.initialRelation, ongoingRelationor subsequentRe-
lation). In Table 4 we provide frequencies with which respec-
tive attributes were assigned to the corresponding markables.

5.2 Grammatical Annotation
The goal of grammatical annotation was to impose the LTAG-
based encoding on the texts from the corpus. Since discourse
units, main verbs, arguments and connectives were labeled
during the pre-processing stage, the corresponding lexical
and ordering attributes became readily available, and hence
were left implicit. The only explicitly tagged attribute was
verb form, associated withPredicatemarkables. Frequencies
of selected attributes are given in Table 5.

6 Processing Model
The abstract architecture of our system comprises a set ofn
classification tasksT = {T1, ..., Tn}. Each taskTi consists
in assigning a label fromLi = {li1, ..., limi

} to an instance
representing the particular generation decision. To solveindi-
vidual tasks, machine learning classifiers are trained on a set
of data extracted from the annotated corpus.

Since in order to generate a well-formed and fluent text,
individual generation decisions cannot be handled in isola-
tion, the final issue to be determined during implementation,
concerns the problem of integrating individual generationde-
cisions with one another. This is a long-standing problem
in NLG (cf. e.g. [Reiter, 1994]), and amounts to determin-
ing the flow of information between tasks. One advantage
of casting different types of generation decisions in a single
classification-oriented format, is that it is easy to implement
and test them in various configurations. In the rest of this sec-
tion we describe two alternative models, a sequential and an
integrated one, and give the results of the initial, quantitative
evaluation.

6.1 Sequential Model
In the pipeline system, implemented as acascade of clas-
sifiers, the output representation is built incrementally, with
subsequent classifiers having access to the outputs of the pre-
vious modules. Figure 5 illustrates this type of processing



Ontological Level Semantic Tags Markable Level
Aspectual Level. stative, durative, culminated Discourse-unit
Frame Level self motion, visualperception, localization Discourse-unit

self mover, source, path, goal, direction, distance. . . Argument
Temporal Level trajector, landmark Discourse-unit

initialRelation, ongoingRelation, subsequentRelationDiscourse-unit

Table 3: Semantic annotation scheme
Start
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Figure 5: Sequential model on the example of three tasks:
Connective, S-Exp.andVerb Form

as a traversal of a multi-layered lattice, with the individual
layers corresponding to single tasks, and the nodes represent-
ing the respective outcomes. At each step, a corpus trained
classifier outputs a probability distribution, and the transition
augmented with the highest probability is selected. A well
known problem with this type of processing is that generation
decisions are dependant on one another and hence the initial
decisions lack the necessary contextual information provided
by the those occuring later (cf.[Danlos, 1984]).

6.2 Integrated Model
This problem is apparently eliminated in an integrated archi-
tecture, with all decisions being handled within a single pro-
cess. As shown in Figure 6, an integrated process can be
modeled as a graph, with the nodes representing outputs from
individual tasks, and the edges marking inter-dependencies.
The problem amounts to finding a path through the graph,
so that for each task, a single node is selected, andglobal
distribution of costs associated with both selected nodes and
transitions is considered.
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Figure 6: Integrated model

6.3 Linear Programming Formulation
To solve this graph search problem we apply an optimiza-
tion technique, called Integer Linear Programming (ILP). An
ILP problem consists of decision variablesx1, x2, ..., xn aug-
mented withcostsand combined in a linear target function,
and a set of constraints blockingillegal decisions. The goal is

to find such an assignment of the variables that the decision
function is either maximized or minimized within the bounds
provided by the constraints (see e.g.[Nemhauser and Wolsey,
1999]). In our application, we usebinary variables to model
both nodes in the graph, corresponding to single labels, and
transitions between nodes. The objective function is then ex-
pressed as a weighted sum of the variables6:

min c(l11)x(l11) + c(l12)x(l12) + ... + c(lij lkp)x(lij , lkp)

The constraints we add specify that firstly, variables may take
binary values only, i.e.x ∈ 0, 1, secondly, for each task only
one variable may be selected, and finally, if two variables
x(lij) andx(lkp) modeling a pair of labels belonging to two
different tasks are selected, then alsox(lij , lkp) co-modeling
this pair of labels must be selected7.

6.4 Evaluation
We evaluated both systems usingleave-one-outcross-
validation, i.e. each text was used once for testing, and the
remaining texts provided the training data. We usedNaive-
Bayesclassifier to learn realizations of individual tasks from
the data, and to solve the ILP model we appliedlp solve, a
GNU-licence Mixed Integer Programming (DIP) solver8.

The goal of the evaluation was to see how good both sys-
tems are at mirroring the human-authored texts. To assess
such defined performance we applied three metrics: accuracy
and Kappa to evaluate individual tasks andPhi, a distance
measure that we used to compare the feature-based repre-
sentations of the generated texts and the original ones. The
results given in Table 6 show that both systems reached rela-
tively high scores, withKappaover 70% for almost all tasks
and the end-to-end scorePhi lying over 85%. This proves that
the meaning-to-formmapping can be successfully learned
from a relatively small corpus. In addition, an improvement
of the ILP system over the pipeline in almost all tasks and
the overall scorePhi indicates that an integrated architecture
offers a serious advantage over the sequential model.

7 Conclusions
In this paper we presented a corpus-based approach to build-
ing a trainable realization component for an NLG system.
We concentrated on three important aspects of this task:
abstract representation of the generation process in terms

6Costs of single nodesc(lij) are calculated as−log(P (lij)),
whereP (lij) is the probability of selecting labellij for task Ti,
output by the classifier. Costs of transitionsc(lij lkp) are given by
−log(P (lij, lkp)), with P (lij , lkp) denoting the joint probability of
labelslij andlkp co-occuring in the corpus.

7For details on the ILP formulation see[Marciniak and Strube,
2005a]

8http://www.geocities.com/lpsolve/



Pipeline ILP
Tasks Accuracy κ Accuracy κ

Adj Rank 96.81% 90.90% 97.43% 92.66%
Adj. Dir. 98.04% 89.64% 97.95% 89.05%
Connective 79.10% 61.14% 79.36% 61.31%
S Exp. 96.20% 90.17% 99.49% 98.65%
Verb Form 87.83% 78.90% 93.22% 88.30%
Verb Lex 67.40% 64.19% 76.08% 74.00%
Phrase Type 87.08% 73.36% 88.03% 77.17%
Prep. Lex 86.95% 81.12% 88.59% 83.24%
Adj Rank 86.95% 78.65% 91.27% 85.72%

Phi 0.87 0.90

Table 6: Results of quantitative evaluation of the ILP and
pipeline systems.

of classification-oriented decisions, annotation of the corpus
with the necessary linguistic information and aggregationof
individual decisions within a single integrated architecture.
In the evaluation we showed that a corpus-based realization
in a narrow domain presents itself as a feasible task requiring
a small amount of annotated data only.
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